TABLE 1. Data

 			•
 Material	K_0 , kb	K_0'	
α-SiO ₂	371.25	6.33	
Al_2O_3	2504.1	4.00	
Mg	344.04	4.07	
K	33.8	3.98	
Na	61.8	3.59	
Pb	416.0	6.30	

a>0 and A>0 (equation 3). For the case $(K_0'-m)<0$ the parameters a and A are of opposite sign, and q is clearly >0. We also need to know whether $2bx+c>(q)^{1/2}$. To answer this question, note that

$$q = (1 + A - am)^2 + 4amA$$

 $= (1 + A + am)^2 - 4am$ (B3)
and
 $2bx + c = 2m(P + a) + (1 + A - am)$
 $= (1 + A + am) + 2mP$
Clearly, for $C < 0$, $(q)^{1/2} < (1 + A + am)$
therefore $2bx + c > (q)^{1/2}$ for all $P \ge 0$. In this case equation B2 is appropriately written in the logarithmic form

 $\frac{1}{(q)^{1/2}} \ln \left[\frac{(1+A+am)+2mP-(q)^{1/2}}{(1+A+am)+2mP+(q)^{1/2}} \right]$

(B)

Fig. 8. Effect of varying m on extrapolated values of v/v_0 versus pressure for aluminum oxide.

To answer the quest we write equal $K_0' - m$, $a = \frac{1}{2(K_0')}$

$$= \left[1 + \frac{2K_0'(n)}{n}\right]$$

We note that both quare root of the pression are positive $q^{1/4}$ for all $P \ge q$ against form (equation B2.

After having evation B1, for both ca P = 0 we then write tion 9).

AP

As has been emph the success of Murns the success

 $C = \pm \frac{1}{2}$ 9. Comparison o